PDF rausgenommen
This commit is contained in:
169
msd2/myoos/vendor/php-ai/php-ml/src/Helper/OneVsRest.php
vendored
Normal file
169
msd2/myoos/vendor/php-ai/php-ml/src/Helper/OneVsRest.php
vendored
Normal file
@ -0,0 +1,169 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace Phpml\Helper;
|
||||
|
||||
use Phpml\Classification\Classifier;
|
||||
|
||||
trait OneVsRest
|
||||
{
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
protected $classifiers = [];
|
||||
|
||||
/**
|
||||
* All provided training targets' labels.
|
||||
*
|
||||
* @var array
|
||||
*/
|
||||
protected $allLabels = [];
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
protected $costValues = [];
|
||||
|
||||
/**
|
||||
* Train a binary classifier in the OvR style
|
||||
*/
|
||||
public function train(array $samples, array $targets): void
|
||||
{
|
||||
// Clears previous stuff.
|
||||
$this->reset();
|
||||
|
||||
$this->trainByLabel($samples, $targets);
|
||||
}
|
||||
|
||||
/**
|
||||
* Resets the classifier and the vars internally used by OneVsRest to create multiple classifiers.
|
||||
*/
|
||||
public function reset(): void
|
||||
{
|
||||
$this->classifiers = [];
|
||||
$this->allLabels = [];
|
||||
$this->costValues = [];
|
||||
|
||||
$this->resetBinary();
|
||||
}
|
||||
|
||||
protected function trainByLabel(array $samples, array $targets, array $allLabels = []): void
|
||||
{
|
||||
// Overwrites the current value if it exist. $allLabels must be provided for each partialTrain run.
|
||||
$this->allLabels = count($allLabels) === 0 ? array_keys(array_count_values($targets)) : $allLabels;
|
||||
sort($this->allLabels, SORT_STRING);
|
||||
|
||||
// If there are only two targets, then there is no need to perform OvR
|
||||
if (count($this->allLabels) === 2) {
|
||||
// Init classifier if required.
|
||||
if (count($this->classifiers) === 0) {
|
||||
$this->classifiers[0] = $this->getClassifierCopy();
|
||||
}
|
||||
|
||||
$this->classifiers[0]->trainBinary($samples, $targets, $this->allLabels);
|
||||
} else {
|
||||
// Train a separate classifier for each label and memorize them
|
||||
|
||||
foreach ($this->allLabels as $label) {
|
||||
// Init classifier if required.
|
||||
if (!isset($this->classifiers[$label])) {
|
||||
$this->classifiers[$label] = $this->getClassifierCopy();
|
||||
}
|
||||
|
||||
[$binarizedTargets, $classifierLabels] = $this->binarizeTargets($targets, $label);
|
||||
$this->classifiers[$label]->trainBinary($samples, $binarizedTargets, $classifierLabels);
|
||||
}
|
||||
}
|
||||
|
||||
// If the underlying classifier is capable of giving the cost values
|
||||
// during the training, then assign it to the relevant variable
|
||||
// Adding just the first classifier cost values to avoid complex average calculations.
|
||||
$classifierref = reset($this->classifiers);
|
||||
if (method_exists($classifierref, 'getCostValues')) {
|
||||
$this->costValues = $classifierref->getCostValues();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an instance of the current class after cleaning up OneVsRest stuff.
|
||||
*/
|
||||
protected function getClassifierCopy(): Classifier
|
||||
{
|
||||
// Clone the current classifier, so that
|
||||
// we don't mess up its variables while training
|
||||
// multiple instances of this classifier
|
||||
$classifier = clone $this;
|
||||
$classifier->reset();
|
||||
|
||||
return $classifier;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return mixed
|
||||
*/
|
||||
protected function predictSample(array $sample)
|
||||
{
|
||||
if (count($this->allLabels) === 2) {
|
||||
return $this->classifiers[0]->predictSampleBinary($sample);
|
||||
}
|
||||
|
||||
$probs = [];
|
||||
|
||||
foreach ($this->classifiers as $label => $predictor) {
|
||||
$probs[$label] = $predictor->predictProbability($sample, $label);
|
||||
}
|
||||
|
||||
arsort($probs, SORT_NUMERIC);
|
||||
|
||||
return key($probs);
|
||||
}
|
||||
|
||||
/**
|
||||
* Each classifier should implement this method instead of train(samples, targets)
|
||||
*/
|
||||
abstract protected function trainBinary(array $samples, array $targets, array $labels);
|
||||
|
||||
/**
|
||||
* To be overwritten by OneVsRest classifiers.
|
||||
*/
|
||||
abstract protected function resetBinary(): void;
|
||||
|
||||
/**
|
||||
* Each classifier that make use of OvR approach should be able to
|
||||
* return a probability for a sample to belong to the given label.
|
||||
*
|
||||
* @return mixed
|
||||
*/
|
||||
abstract protected function predictProbability(array $sample, string $label);
|
||||
|
||||
/**
|
||||
* Each classifier should implement this method instead of predictSample()
|
||||
*
|
||||
* @return mixed
|
||||
*/
|
||||
abstract protected function predictSampleBinary(array $sample);
|
||||
|
||||
/**
|
||||
* Groups all targets into two groups: Targets equal to
|
||||
* the given label and the others
|
||||
*
|
||||
* $targets is not passed by reference nor contains objects so this method
|
||||
* changes will not affect the caller $targets array.
|
||||
*
|
||||
* @param mixed $label
|
||||
*
|
||||
* @return array Binarized targets and target's labels
|
||||
*/
|
||||
private function binarizeTargets(array $targets, $label): array
|
||||
{
|
||||
$notLabel = "not_${label}";
|
||||
foreach ($targets as $key => $target) {
|
||||
$targets[$key] = $target == $label ? $label : $notLabel;
|
||||
}
|
||||
|
||||
$labels = [$label, $notLabel];
|
||||
|
||||
return [$targets, $labels];
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user